

Acetonide (2d) of Compound 2. Prepared by treatment of 2 with Me_2CO , *p*-toluenesulphonic acid. Colourless oil. EIMS m/z : 558 [M^+]. ^1H NMR (400 MHz): δ 0.73, 0.94 (each s, 3H), 0.95 (*d*, *J* = 6.5 Hz), 1.01, 1.16, 1.23, 1.27 (each s, 3H), 1.39, 1.51 (each s, 3H, Acetonide diMe), 2.61 (s, 1H, H-18), 3.60 (s, 3H, -COOME), 3.58 (*d*, *J* = 4.1 Hz, 1H, H-1 or 3), 3.87 (*d*, *J* = 7.7 Hz, 1H, H-3 or 1), 4.18 (*dd*, *J* = 4.1, 7.7 Hz, 1H, H-2), 5.40 (*br s* 1H, H-12). Another acetonide (2e) was detected by TLC but not identified with the spectral data.

REFERENCES

1. Yamato, M. (1985) *Yakugaku Zasshi* **78**, 1086.
2. Kimura, Y., Takido, M. and Yamanouchi, S. (1968) *Yakugaku Zasshi* **88**, 1355.
3. Su, G., Su, S. and Zhu, T. (1984) *Shenyang Yaoxueyuan Xuebao* **1**, 44.
4. Cheng, C., Chu, T., Wang, H., Huang, P. and Chin, K. (1978) *Hua Hsueh Hsueh Pao* **36**, 35.
5. Sha, S. (1980) *Yao Hsueh Tung Pao* **15**, 6.
6. Okuda, T., Yoshida, T., Kuwahara, M., Memon, M. and Shingu, T. (1982) *J. Chem. Soc., Chem. Commun.* 163.
7. Okuda, T., Yoshida, T., Kuwahara, M., Memon, M. and Shingu, T. (1984) *Chem. Pharm. Bull.* **32**, 2165.
8. Miyamoto, K., Koshiura, R., Ikeya, Y. and Taguchi, H. (1985) *Chem. Pharm. Bull.* **33**, 3977.
9. Doddrell, D. M., Khong, P. W. and Lemis, K. G. (1974) *Tetrahedron Letters* 2381.
10. Du, H., Zhao, X. and Zhao, S. (1983) *Yaoxue Xuebao* **18**, 314.

Phytochemistry, Vol. 27, No. 1, pp. 299–301, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd.

TRITERPENOID FROM *SALVIA PRZEWALSKII*

NING WANG, MASATAKE NIWA* and HOU-WEI LUO

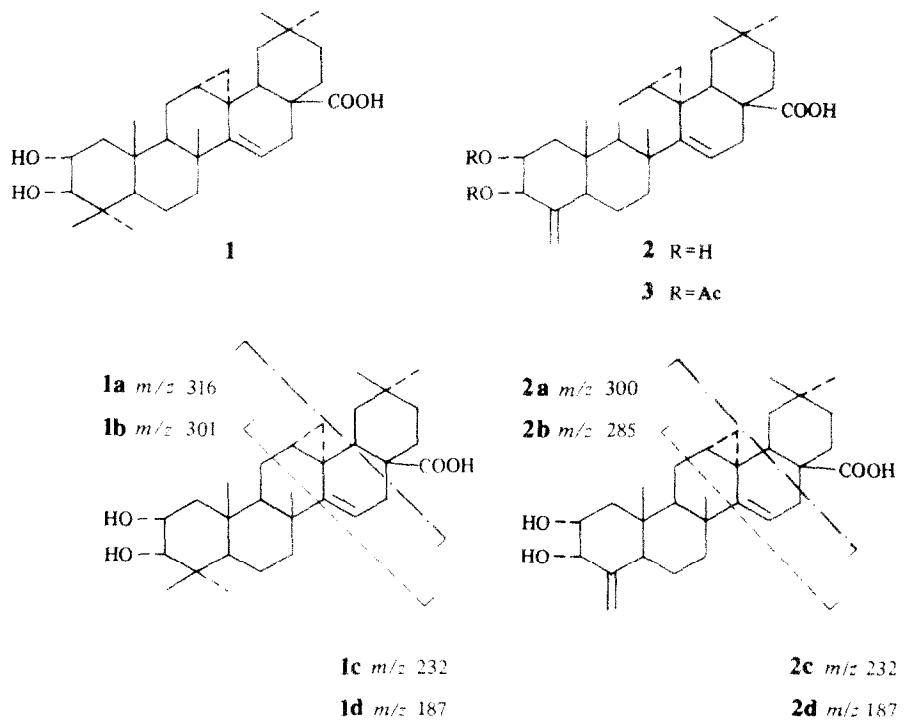
Nanjing College of Pharmacy, Nanjing, China; *Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

(Revised received 15 April 1987)

Key Word Index—*Salvia przewalskii*; Labiate; triterpenoids; przewanoic acid A; przewanoic acid B.

Abstract—Oleanolic acid and two novel triterpenoids, przewanoic acid A and przewanoic acid B, were isolated from the dried roots of *Salvia przewalskii*. Their structures were elucidated on the basis of chemical and spectral methods.

INTRODUCTION


The Tibetan folk drug 'Hong Qin Jiao' is the dried roots of *Salvia przewalskii* Maxim, which is widely distributed in the western areas of China [1–3]. It has been reported that its main chemical components are the *O*-naphthaquinone diterpenes [4, 5]. The present paper describes the isolation and elucidation of two novel triterpenoids, przewanoic acid A and przewanoic acid B, along with a known triterpenoid, oleanolic acid.

RESULTS AND DISCUSSION

Przewanoic acid A (**1**), white needles, mp 269–270°, $[\alpha]_D + 125^\circ$ had the molecular formula $\text{C}_{30}\text{H}_{46}\text{O}_4$. Its UV spectrum $\lambda_{\text{max}}^{\text{MeOH}}$ 211 nm ($\log \varepsilon 3.65$) showed the probable presence of a double bond conjugated cyclopropane [6]. The ^1H NMR spectrum showed the presence of six methyl groups in agreement with the ^{13}C NMR spectral data (δ 17.5, 17.5, 22.2, 22.8, 29.5, 32.6; Table 1). Also the ^1H NMR spectrum revealed one allylic hydrogen and two secondary hydroxyls. The signal at high field (-0.08 , *dd*, 1H, *J* = 4.8, 4.8 Hz) is characteristic of the CH_2 in a cyclopropane [6, 7].

The coupling relationships of related protons were assigned from the comparative study of the ^1H – ^1H 2D COSY data. The signals at 5.82 (*dd*, 1H, *J* = 7.2, 3.6 Hz), 2.79 (*dd*, 1H, *J* = 13.2, 7.2 Hz) and 2.07 (*dd*, 1H, *J* = 13.2, 3.6 Hz) were a group of corresponding protons. This showed the presence of part structure $^{14}\text{C} = ^{15}\text{CH} = ^{16}\text{CH}_2$. The signals at 4.29 (*ddd*, 1H, *J* = 10.7, 4.0, 2.6 Hz, CHOH) and 3.77 (*d*, 1H, *J* = 2.6 Hz, CHOH) were coupled with each other. This indicated two secondary hydroxy groups which should be placed at C-2 and C-3, respectively, in a *trans*-diaxial configuration ($J_{2\text{H}-3\text{H}} = 2.6$ Hz).

The position of the carboxyl group at C-17 and the double bond at the Δ^{14} -position was established from the mass spectral fragmentation pattern of przewanoic acid A (**1**). Compound **1** exhibited a fragment peak at m/z 316 (**1a**). This ion peak was accompanied by a peak 15 mass units lower (**1b**) which was formed by the loss of the allylically activated methyl group at C-8. Moreover, the mass spectrum of **1** showed a peak at m/z 232 (**1c**) derived from rings D and E. Furthermore, the fragment **1c** loses the carboxyl substituent at C-17 giving rise to a fragment base peak at m/z 187 (**1d**). This type of fragmentation is

consistent with the mass spectral data of Δ^{14} -taraxerene derivatives reported by Djerassi *et al.* [8-10].

From these data the compound **1** was assigned tentatively the structure $2\alpha,3\alpha$ -dihydroxy-12,13-cyclo-taraxerane-14-en-28-oic acid.

Another triterpenoid, przewanoic acid B (**2**), white needles, mp 258-259°, $[\alpha]_D + 103$ had the molecular formula $C_{29}H_{42}O_4$. Its spectra are similar to those of compound **1**. However, notable differences between **1** and **2** could be seen with regard to the following points. The 1H NMR spectrum showed the presence of four tertiary methyl groups on saturated carbons at δ 0.72, 0.90, 0.91, 0.96 (each s and 3 H). Furthermore, the signals at 5.06 and 4.73 (each s and 1 H) showed the presence of an exocyclic methylene group. This was confirmed by the ^{13}C NMR spectral data at δ 14.5, 22.1, 29.3, 32.3 (each q) and 150.2 (s), 111.3 (d) (Table 1).

The position of the exocyclic methylene at C-4 was established by comparison with the HRMS data of compounds **1** and **2**. The fragment at m/z 300.2062 (**2a**, $C_{20}H_{28}O_2$) and 285.1848 (**2b**, $C_{19}H_{26}O_2$, **2a**-Me) resulted from RDA cleavage of ring D and are 16 mass units lower than **1a** and **1b**, respectively. On the other hand, both the fragment peaks at m/z 232.1473 (**2c**, $C_{15}H_{26}O_2$) and 187.1462 (**2d**, $C_{14}H_{19}$, **2c**-COOH) resulting from ring C cleavage were the same as **1c** and **1d**. Moreover, the chemical shift value of the 3β proton moved from δ 3.77 in **1** to 4.18 in **2**, due to the deshielding effect of an exocyclic methylene instead of a geminal dimethyl group.

EXPERIMENTAL

Plant material. The roots of *Salvia przewalskii* Maxim were collected in the Gansu province of China, during the autumn of 1984.

Extraction. The dried roots (10 kg) were extracted with hot 95% EtOH. The residue (203 g) after evapn of solvent was chromatographed on a silica gel column eluted successively with cyclohexane- CH_2Cl_2 , EtOAc, yielding oleanolic acid (25 mg), przewanoic acid A (18 mg) and przewanoic acid B (42 mg) as well as 12 *O*-naphthaquinone diterpenes.

Przewanoic acid A (1). Recrystallized from Me_2CO as white needles, mp 269-270°, $[\alpha]_D + 125$ (MeOH; *c* 0.08). Found:

Table 1. ^{13}C NMR spectra of compounds **1** and **2** (25 MHz, TMS as int. standard)*

C	1	2	C	1	2
1	42.8 <i>t</i>	42.3 <i>t</i>	16	31.1 <i>t</i>	30.6 <i>t</i>
2	66.2 <i>d</i>	69.2 <i>d</i>	17	52.8 <i>s</i>	52.8 <i>s</i>
3	79.2 <i>d</i>	75.5 <i>d</i>	18	34.9 <i>d</i>	34.5 <i>d</i>
4	38.7 <i>s</i>	150.2 <i>s</i>	19	38.9 <i>t</i>	35.4 <i>t</i>
5	48.7 <i>d</i>	45.1 <i>d</i>	20	29.0 <i>s</i>	28.8 <i>s</i>
6	19.5 <i>t</i>	20.4 <i>t</i>	21	34.3 <i>t</i>	33.8 <i>t</i>
7	35.7 <i>t</i>	36.7 <i>t</i>	22	31.1 <i>t</i>	32.3 <i>t</i>
8	38.7 <i>s</i>	37.9 <i>s</i>	23	29.5 <i>q</i>	111.3 <i>t</i>
9	48.0 <i>d</i>	44.9 <i>d</i>	24	17.5 <i>q</i>	
10	37.5 <i>s</i>	37.2 <i>s</i>	25	17.5 <i>q</i>	14.5 <i>q</i>
11	18.5 <i>t</i>	20.1 <i>t</i>	26	22.2 <i>q</i>	29.3 <i>q</i>
12	14.9 <i>d</i>	14.6 <i>d</i>	27	11.5 <i>t</i>	11.3 <i>t</i>
13	23.8 <i>s</i>	23.4 <i>s</i>	28	179.9 <i>s</i>	180.9 <i>s</i>
14	156.6 <i>s</i>	156.4 <i>s</i>	29	32.6 <i>q</i>	32.3 <i>q</i>
15	118.3 <i>d</i>	117.8 <i>d</i>	30	22.8 <i>q</i>	22.1 <i>q</i>

*Compound **1** in pyridine, **2** in $CDCl_3$.

$[M^+]$ 470.3485; $C_{30}H_{46}O_4$ requires: 470.3564. UV $\lambda_{\text{Max}}^{\text{MeOH}}$ nm (log ϵ): 211 (3.65). IR $\nu_{\text{Max}}^{\text{KBr}}$ cm $^{-1}$: 3584, 3384, 1695. ^1H NMR (400 MHz, pyridine- d_5): δ 5.82 (dd, 1H, J = 7.2, 3.6 Hz), 4.29 (ddd, 1H, J = 10.7, 4.0, 2.6 Hz), 3.77 (d, 1H, J = 2.6 Hz), 0.86, 0.93, 0.94, 1.04, 1.13, 1.20 (each 3H, s), -0.08 (dd, 1H, J = 4.8, 4.8 Hz). For ^{13}C NMR, see Table 1. EIMS (70 ev) m/z (rel. int.): 470 [M^+]⁺ (82.8), 455 [$M - \text{Me}$]⁺ (7.5), 452 [$M - \text{H}_2\text{O}$]⁺ (90.9), 425 [$M - \text{COOH}$]⁺ (7.7), 316 (2.1), 301 (30.5), 232 (1.2), 187 (100), 133 (34.2).

Przewanoic acid B (2). Recrystallized from MeOH as white needles, mp 258–259°, $[\alpha]_D^{25}$ +103° (MeOH; c 0.465). Found: $[M^+]$ 454.3381; $C_{29}H_{42}O_4$ requires: 454.3252. UV $\lambda_{\text{Max}}^{\text{MeOH}}$ nm (log ϵ): 210 (3.65). IR $\nu_{\text{Max}}^{\text{KBr}}$ cm $^{-1}$: 3426, 1694, 1650, 905. ^1H NMR (400 MHz CDCl_3): δ 5.58 (dd, 1H, J = 7.4, 4.0 Hz), 5.06 (s, 1H), 4.73 (s, 1H), -0.08 (dd, 1H, J = 4.8 Hz). For ^{13}C NMR, see Table 1. EIMS (70 ev) m/z (rel. int.): 454 [M^+] (29.1), 439 [$M - \text{Me}$]⁺ (5.1), 436 [$M - \text{H}_2\text{O}$]⁺ (34.8), 409 [$M - \text{COOH}$]⁺ (4.5), 300 (8.2), 285 (8.6), 232 (4.1), 187 (100), 133 (22.1).

Przewanoic acid B acetate (3). Compound 2 (6 mg) was dissolved in pyridine (0.4 ml) and Ac_2O (0.6 ml) and left overnight. Normal work-up gave przewanoic acid B acetate (4 mg) as needles. ^1H NMR (90 MHz CDCl_3): δ 1.98 (s, 3H, COMe), 2.07 (s, 3H, COMe).

Acknowledgement—We thank Mr Ji Jiang, Center of Physico-Chemical Tests, for the measurement of mass spectra.

REFERENCES

- (1977) *Flora Reipublicae Popularis Sinicae* **66**, 86.
- (1980) *Sichuan Chinese Materia Medica* 50.
- (1984) The First Volume of Chinese National Minorities Medicine, 625.
- Xue-min Xu, (1982) *Zhong Cao Yao* **13**, 5.
- Xue-min Xu, (1984) *Zhong Cao Yao* **15**, 1.
- Shimizu, Y. and Pelletier, S. W. (1966) *J. Am. Chem. Soc.* **88**, 1544.
- Georgian, V., Kerwin, J. F., Wolff, M. E. and Owings, F. F. (1962) *J. Am. Chem. Soc.* **84**, 3594.
- Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) *J. Am. Chem. Soc.* **85**, 3688.
- Misra, P., D. R. and Khastgir, H. N. (1970) *Tetrahedron* **26**, 3017.
- Pradhan, B., De, S., Nath, A. and Shoolery, J. N. (1984) *Phytochemistry* **23**, 2593.

Phytochemistry, Vol. 27, No. 1, pp. 301–303, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd.

MYRIANTHINIC ACID: A NEW TRITERPENOID FROM *MYRIANTHUS ARBOREUS*

F. NGINZEKO NGOUNOU, DAVID LONTSI and B. LUCAS SONDENGAM*

Department of Organic Chemistry, University of Yaoundé, D.P. 812 Yaoundé, Cameroon.

(Revised received 27 March 1987)

Key Word Index—*Myrianthus arboreus*; Cecropiaceae; bark; pentacyclic triterpenoids; Myrianthinic acid; $3\beta,6\beta$ -dihydroxyolean-12-en-29-oic acid.

Abstract—A new pentacyclic triterpene acid has been isolated from the stem bark of *Myrianthus arboreus* and its structure has been established as $3\beta,6\beta$ -dihydroxyolean-12-en-29-oic acid and named myrianthinic acid.

INTRODUCTION

Myrianthus arboreus P. Beauv., Cecropiaceae [1] is a small tropical African tree, which grows from Guinea to southern Angola, from southern Sudan to western Tanzania and through Ouganda. The plant is widely used in indigenous medicine: the infusion of bark to treat dysentery; the leaves against heartaches, the accidents during pregnancy and dysmenorrhoea; the juice of young leaves against toothaches and bronchitis [2]. Early works on *M. arboreus* reported the isolation of peptide alkaloids from the leaves [3], tormentic acid, 2-acetyl tormentic

acid, 3-acetyl tormentic acid and euscaphic acid from the root wood [4, 5], and Myrianthinic acid from the same organ [6]. We now report the isolation from the trunk bark of *M. arboreus*, of a new triterpenic acid, myrianthinic acid (2) as its methyl ester (1).

RESULTS

From the methylated ethyl acetate extracts of ground barks, the methyl ester of myrianthinic acid (1) $C_{31}H_{50}O_4$ was obtained which crystallized from methylene chloride as colourless granules, mp 145–147°. The IR spectrum revealed absorptions at ν_{max} 1700 (–COOMe) and 1645 cm $^{-1}$, and at 3450 and 3525 cm $^{-1}$, indicative of the presence of two hydroxyl groups. Myrianthinic acid

*Author to whom correspondence should be addressed.